Работа двигателя при послойном смесеобразовании.
Переход двигателя на режим работы с использованием послойной смеси осуществляется при следующих условиях:
- нагрузка и частота вращения двигателя соответствуют режимам, на которых эффективно использование послойного смесеобразования;
- системой не зарегистрирована неисправность, из/за которой может повыситься выброс вредных веществ;
- температура охлаждающей жидкости выше 50 °C,
- датчик окислов азота исправен;
- температура накопительного нейтрализатора находится в пределах от 250°C до 500°C. Если эти предпосылки выполнены, можно перейти на послойное смесеобразование.
Система зажигания
Задачей системы зажигания является воспламенение рабочей смеси в нужный момент времени. Для этого блок управления двигателем должен определять для каждого режима работы двигателя угол опережения зажигания, энергию искры и длительность искрообразования. От угла опережения зажигания зависят крутящий момент, выброс вредных веществ и расход топлива двигателя.
При послойном смесеобразованиимомент зажигания может изменяться в узком диапазоне значений угла поворота коленчатого вала, которому соответствуетобразование способной к воспламенению смеси.
При работе на гомогенных бедной и стехиометрической смесях.Требования к зажиганию не отличаются от них у двигателей с впрыском бензина во впускные каналы. Ввиду одинакового распределениясмеси у двигателей с обеими системами впрыска оптимальные углы опережение зажигания практически не отличаются.
При расчете оптимальных углов опережения зажигания используются:
Основные исходные данные: 1. о нагрузке двигателя, определяемые по сигналам измерителя расхода воздуха и датчика температуры воздуха на впуске, 2. о частоте вращения коленчатого вала, измеряемой по сигналам датчика
Вспомогательные данные, определяемые по сигналам: 3. датчика температуры охлаждающей жидкости, 4. с блока управления дроссельной заслонкой, 5. датчика детонации, 6. датчиков положения педали акселератора, 7. датчика кислорода.
Самые распространенные виды двигателей
- Оппозитный двигатель. В нем поршни двигаются по обеим сторонам коленчатого вала в горизонтальном направлении вправо и влево. Автомобили с таким двигателем движутся более плавно. Создаваемые поршнями крутящие моменты компенсируют друг друга, значительно уменьшая вибрацию.
- Рядный двигатель. Все его цилиндры расположены в одной плоскости рядом друг с другом. Конструкция довольна проста. Такие двигатели отличаются следующими показателями: имеют высокую стабильность, высокую характеристику крутящего момента на низких оборотах, меньший размер и низкий расход топлива.
- V-образный двигатель. У него все цилиндры разделяются на две группы друг напротив друга. Мотор образует плоскость под углом. V-образные двигатели отличаются небольшими размерами по длине и высоте.
- Квазитурбинный двигатель. Является модифицированным двигателем, основанным на роторном силовом агрегате. Он использует цепной ротор, состоящий из четырех частей. Такой двигатель обладает небольшим размером, высоким крутящим моментом и высокой мощностью. Но они не используются ни на одном автомобиле в настоящий момент.
- Роторный двигатель. Его внутреннее пространство разделено на три рабочие камеры. Во время работы постоянно изменяется объем рабочих камер. Также роторный двигатель имеет все те же четыре такта: впуск, сжатие, сгорание и выпуск. Стоимость, ремонт и обслуживание такого агрегата существенно отличаются в большую сторону. По своим характеристикам двигатель не показывает особых преимуществ перед обычными.
- Green Steam двигатель — эффективный, простой и экономичный. Его мотор преобразовывает избыточное тепло в водяной пар, приводящий в движение силовой агрегат. Такой мотор используют для воздушных насосов, водяных насосов, генераторов, кондиционеров.
- Двигатель Стирлинга. Это двигатель внешнего сгорания. Его периодичный нагрев и охлаждение изменяют давление, вследствие чего образуется энергия для работы. Он отлично подходит для преобразования тепла в электроэнергию.
- Радиальный двигатель или звездообразный. Это поршневой двигатель, в котором вокруг коленчатого вала расположены цилиндры. Преимущественно используется в самолетах.
Детонация в двигателе
Появление детонации происходит по следующей схеме. При распространении фронта пламени несгоревшая рабочая смесь подвергается сжатию: сгоревшие газы позади фронта пламени действуют на нее подобно поршню. Если при этом давление и температура превысят критические для данного топлива величины, создаются условия для самовоспламенения, которое называют детонационным. Его характерный признак — взрывная скорость распространения пламени. Принято считать, что это явление связано с образованием перекисей в каких-то участках камеры сгорания под действием высокого давления и температуры. Данный химический процесс требует определенного времени, поэтому, как правило, он происходит в зонах, наиболее удаленных от свечи и дольше всего подвергающихся действию сильного давления. Способствует этому и прогрев рабочей смеси горячими стенками камеры, что сильнее всего сказывается в узких щелях. Понятно также, что детонация тем вероятнее, чем выше степень сжатия. Когда часть заряда детонирует, образуются ударные волны, которые распространяются со скоростью до 1000 м/с и «бьют» в стенки камеры сгорания. Напрямую разрушить их они не могут, но передают часть своей кинетической энергии, вызывая местные перегревы и вибрацию. Если детонационное сгорание происходит достаточно долго, обгорают или разрушаются металлические детали, чаще всего поршень, свеча или клапан.
Детонация наиболее вероятна, когда двигатель работает с полностью открытой дроссельной заслонкой, а частота вращения коленчатого вала мала. В этом случае наполнение цилиндров свежей смесью максимальное, остаточных газов мало, а время, в течение которого отдаленные от свечи части заряда подвергаются воздействию давления и температуры, наиболее велико и достаточно для образования перекисей. Наглядное проявление этого положения знакомо каждому водителю. Если во время разгона с малой начальной скорости при полностью открытой дроссельной заслонке отчетливо слышны звонкие детонационные стуки, то это лишь вначале, а при достижении определенной скорости они пропадают. Или наоборот, когда автомобиль движется на подъем с замедлением (дроссельная заслонка опять-таки полностью открыта), то вначале детонации нет, а при падении скорости до какой-то величины она может появиться. В подобных случаях для прекращения стуков достаточно прикрыть дроссель (уменьшить наполнение цилиндров) или перейти на пониженную передачу (ускорить вращение коленчатого вала).
Характерными внешними признаками детонации являются повышенное дымление двигателя — черный дым из выхлопной трубы и падение его мощности из-за того, что горение протекает не лучшим образом.
Задание № 3
1.Компрессия
в цилиндрах измеряется…
на полностью
прогретом двигателе
на холодном
двигателе
при закрытых
дроссельных и воздушной заслонках
при полностью
открытых дроссельных и воздушной
заслонках
на прогретом или
холодном двигателе при любом положении
заслонок
Эталон: 1,4
Р=5
2.При
измерении компрессии…
выворачивается
свеча только на проверяемом цилиндре
выворачиваются
свечи на всех цилиндрах
Эталон:
2 Р=2
1)
на 2-4 2) на 4-8 3) на 8-12 4) на
12-16
Эталон:
3 Р=4
4.Разность
показаний манометра при проверке
компрессии в цилиндрах одного и того
же двигателя не должна превышать…
1)
0,1 Мпа 2) 0,2 Мпа 3) 0,3 Мпа
4) 0,4 Мпа
План занятия производственного обучения: Техническое обслуживание и диагностирование газораспределительного механизма УП.01.02. Устройство, техническое обслуживание и ремонт автомобилей по профессии СПО 190631.01 Автомеханик
Цель занятия:Обучение практическим приемам обнаружения неисправностей газораспределительного механизма, устранения простейших неисправностей, выполнения регулировки теплового зазора в газораспределите…
План занятия производственного обучения: Техническое обслуживание и диагностирование системы смазки двигателя УП.01.02. Устройство, техническое обслуживание и ремонт автомобилей по профессии СПО 190631.01 Автомеханик
Цель занятия:Обучение практическим приемам определения и устранения возможных неисправностей в смазочной системе двигателей. Задачи занятия:Обучающие:Формирование и усвоение приемов проведе…
План занятия производственного обучения: Техническое обслуживание и диагностирование системы охлаждения двигателя УП.01.02. Устройство, техническое обслуживание и ремонт автомобилей по профессии СПО 190631.01 Автомеханик
Цель занятия:Обучение практическим приемам определения и устранения возможных неисправностей в системе охлаждения двигателей. Задачи занятия:Обучающие:Формирование и усвоение приемов…
План занятия производственного обучения: Техническое обслуживание и диагностирование системы питания дизельного двигателя УП.01.02. Устройство, техническое обслуживание и ремонт автомобилей по профессии СПО 190631.01 Автомеханик
Цель занятия:Обучение диагностике с помощью приборов системы питания дизельных двигателей, ее составных частей и сборочных единиц, а также выполнению технического обслуживания. Задачи занятия:О…
Рабочая программа учебной практики УП. 01.02 «Устройство, техническое обслуживание и ремонт автомобилей» ПМ. 01 Техническое обслуживание и ремонт автотранспорта
В результате прохождения учебной практики по виду профессиональной деятельности «Техническое обслуживание и ремонт автотранспорта» обучающийся долженуметь:- снимать и устанавливать агрегат…
Методическая разработка урока ПМ.01 Техническое обслуживание и ремонт автотранспорта по МДК 01.02. Устройство, техническое обслуживание и ремонт автомобилей. Тема урока: «Сцепление».
Методическая разработка урокаПМ.01 Техническое обслуживание и ремонт автотранспорта по МДК 01.02. Устройство, техническое обслуживание иремонт автомобилей. Тема урока: «Сцепление»…
Регулировка теплового зазора
Тепловым зазором называют расстояние межу толкателем и распредвалом, необходимое для того, чтобы компенсировать расширение при нагреве клапана. Регулировка делается по-разному на разных моделях двигателей. На моделях с коромыслом в качестве средства взаимодействия с толкателем, например, специальный регулировочный механизм. На самых распространенных двигателях с кулачковой системой процедура замены «стакана» выглядит следящим образом.
- Снять крышку клапанной группы.
- Повернуть коленвал таким образом, чтобы поршень 1-го цилиндра оказался в верхнем крайнем положении.
- Далее с помощью специального щупа необходимо измерить зазор между кулачком и толкателем (в тех клапанах, которые в этот момент закрыты). Щуп в зазоре должен лежать плотно, но свободно вытаскиваться.
- Провернуть коленвал на 360 градусов и повторить процедуру с оставшимся клапанами.
- Заменить те стаканы, в которых зазор оказался слишком большим или малым, на новые.
Важном помнить, что тепловой зазор, да и клапаны в целом, проверяется только она «холодном» двигателе
Похожие вопросы
Другие предметы 03.06.2023 22:11 8 Лаврова Наталия
Школьный этап всероссийской олимпиады школьников по технологии «Техника и техническое творчество»
Ответов: 1
Другие предметы 18.05.2023 15:56 63 Хайрат Лаура
1.Для чего предназначен передаточный механизм? 2.Какие передачи позволяют преобразовать возвратно-
Ответов: 2
Другие предметы 04.06.2023 10:55 21 Трунова Эля
1. Диффузия происходит только в А) в жидкостях и газах В) в газах С) в газах, жидкостях и твердых
Ответов: 2
Другие предметы 13.08.2020 15:59 9 Аксеневич Влада
Вариант 2 1. Биметаллическая пластина, являющаяся датчиком терморегулятора электрического утюга, п
Ответов: 0
Другие предметы 16.05.2023 16:09 16 Козлов Владимир
1. Кто является основателем школы научного менеджмента? — А. Маслоу; — Э. Мэйо; — Ф.Тейлор; — А. Фай
Ответов: 2
Другие предметы 09.07.2019 20:57 15 Уразметова Наиля
1. Для чего предназначены трансформаторы? а) для преобразования переменного тока одного напряжения в
Ответов: 1
Другие предметы 16.05.2023 17:05 41 Соловьёва Дарья
ТЕХНОЛОГИЯ 1. Основную часть используемой людьми электрической энергии создают: а) атомные электро
Ответов: 2
Другие предметы 30.06.2023 04:58 1 Золотовская Кира
1. Выбери верное утверждение Смесь железной стружки и песка можно разделить при помощи магнита. Одно
Ответов: 2
Другие предметы 09.11.2020 01:19 7 Редько Ваня
1. Геологические науки их цели и задачи. 2. Роль геологии в развитии нефтяной и газовой промышленн
Ответов: 1
Другие предметы 01.09.2018 04:39 53 Сауляк Нина
Древесину заготавливают: 1) лесничества 2) деревообрабатывающая промышленность 3) лесхозы 4) цепные
Ответов: 1
Как работает охлаждение?
Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.
Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.
Бедная и богатая ТВС, узлы и системы дозирования
Эмпирическая формула дает определение «нормальной» ТВС, как смеси 14,7 килограмм атмосферного воздуха и 1 килограмма жидкого топлива. Топливная смесь, количество воздуха в которой больше указанного в соотношении, называется бедной, и, соответственно, богатой, при меньшем количестве воздуха.
И хотя скорость холодного испарения может быть изменена на нефтеперерабатывающем заводе, это лишь слегка меняет ситуацию. Например, гоночный бензин имеет крайне плохое испарение на холоде и, скорее всего, не позволит двигателю работать. Для запуска холодного двигателя требуется значительно обогатить смесь; который называется дросселем. Без дросселя топливный заряд, который достигает цилиндров, будет слишком обедненным, чтобы загореться. Даже если двигатель запустился, до тех пор, пока не произойдет передача тепла, распределение топлива будет страдать из-за того, что бензин будет путаться в бегунах впускного коллектора.
- бедная — воздуха > 14,7
- богатая — воздуха
В двигателях внутреннего сгорания за приготовление и состав топливно-воздушной смеси отвечает карбюраторный узел, который в настоящее время практически вытеснен инжекторной системой впрыска. И одна, и другая система обеспечивает многообразие режимов работы ДВС за счет приготовления смеси с различным содержанием атмосферного воздуха.
Еще одна проблема — медленная скорость проворачивания двигателя во время запуска и чрезмерное трение, которое должно быть преодолено стартером. Когда впускной коллектор достаточно горячий для хорошего испарения топлива, функция дросселя должна быть сведена к нулю. Соотношение — части воздуха к одной части топлива. Когда число опускается ниже, на стандартное количество топлива поступает меньше воздуха. В стандартном карбюраторе нисходящего потока дроссель представляет собой просто бабочку или пластину, расположенную в воздушном рупоре.
Историческая справка. Барботажный карбюратор – единственный в своем роде узел, позволявший приготовить идеальную топливно-воздушную смесь. Такая ТВС представляла собой смесь паров и атмосферного воздуха и позволяла достигнуть максимального КПД двигателя при минимальном расходе жидкого горючего. К сожалению, конструкция барботажного карбюратора была громоздкой и небезопасной в использовании, а отношение количества воздуха и паров топлива сильно зависело от температуры окружающей среды.
Когда он вызывается во время проворачивания, дроссель закрывается и выдает почти полный вакуум коллектора в бустерную трубку Вентури, забирая большое количество топлива через основную измерительную систему. Первые дроссельные системы были подключены водителем изнутри автомобиля. Расположенная на приборной панели ручка с надписью «дроссель» будет вытащена примерно на дюйм или около того, что закроет бабочку в карбюраторе, и оператор отрегулирует количество отверстий, чтобы обеспечить бесперебойную работу двигателя и разрешить движение автомобиля в то время как двигатель все еще был холодным.
Историческая справка. После принятия свода норм и законов, известного как EURO 3 и регламентирующего содержание вредных для экологии веществ в выхлопных газах автомобилей, производители ДВС перешли на многоточечную инжекторную систему впрыска топлива. Каждая форсунка обслуживает «свой» цилиндр, а электронная дозирующая система подбирает необходимый состав смеси, который хоть незначительно, но отличается от цилиндра к цилиндру. На практике такое усложнение приводит к снижению надежности и усложнению ремонта в случае поломки.
Если бы смесь была слишком тощей, двигатель опустился бы, плюнул бы через карбюратор и, возможно, вспыхнул бы. По мере того, как тепло накапливалось, это была задача водителя медленно отменить дроссель, снова нажав ручку, позволяя карбюратору обеспечить нормальную смесь. Часто водитель забывал, и дроссель все равно слегка вызывался при полностью нагретом двигателе. Это вызовет чрезмерно богатую смесь, заглушает свечи зажигания, загрязняет смазочное масло бензином и создает чрезмерный углерод в цилиндрах, все время тратит впустую хорошее количество бензина.
Устройство газораспределительного механизма
Газораспределительный механизм состоит из:
- распределительного вала;
- толкателей;
- клапанов;
- коромысла;
- штанги;
- привода.
1. Распределительный вал. Вращение распределительного вала приводит к своевременному открытию и закрытию клапанов газораспределительного механизма в зависимости от последовательности работы цилиндров двигателя, учитывая фазы газораспределения газов в механизме. Изготавливают распределительный вал из высокопрочной закаленной стали или чугуна. На валу ГРМ имеются опорные шейки и кулачки. Форма кулачков влияет на рабочие процессы распределения горючей смеси и газов, частоту и время открытия, закрытия клапанов. В торце распределительного вала ГРМ крепится звездочка (на которую устанавливается цепь) или шкив привода вала (на которую одевается ремень). Вал устанавливается в корпусе на подшипниках. В целях предотвращения осевых смещений распределительный вал имеет упорный фланец.
2. Толкатели. Толкатели – это детали газораспределительного механизма, которые служат для передачи усилий от кулачков распределительного вала к штангам коромысел. Толкатели изготавливают из высокопрочной стали или чугуна.
Виды толкателей: роликовые, цилиндрические, грибовидные.
Движение толкателей происходит в корпусах, закрепленных на блоке цилиндров или по направляющим.
3. Клапаны. Клапаны служат для подачи горючей смеси в цилиндры двигателя и вывода отработанных газов. Различают впускные и выпускные клапаны. Впускные служат для впуска горючей смеси, а выпускные клапаны служат для выпуска отработавших газов.
Конструкция клапана. Клапан состоит из стержня и головки. НА клапанной головке имеется кромка под 45 градусов для лучшего прилегания клапана. Впускной клапан отличается от выпускного диаметром. Выпускной клапан значительно больше по диаметру, чем впускной, так как объем отработавших газов превышает объем подающейся горючей смеси. Клапаны ГРМ установлены в головке блока цилиндров. Место их соединения называется седлом и имеет конусную форму. Для герметизации цилиндра предназначен клапанный механизм. Для улучшения герметизации цилиндра проводят процесс под названием притирка клапанов.
Впускные клапаны изготавливают из стали с хромистым покрытием, а выпускные клапаны из жаропрочной стали. Седла клапанов изготавливают из жаропрочного чугуна.
Движение стержней клапанов осуществляется по направляющим втулкам, которые изготавливаются из чугуна или стали. Направляющие соединены с головкой блока цилиндров. Клапаны оснащены внутренней и наружной пружинами. Пружины же крепятся с помощью тарелок, сухарей и шайб.
Открытие клапанов осуществляется через усилие, которое передается от распределительного вала на клапан.
Газораспределительный механизм современных двигателей устроен таким образом, что на каждый цилиндр двигателя имеется по два клапана впуска и два клапана выпуска. Для снятия клапанов используют рассухариватели клапанов.
4. Штанги
Штанги служат для передачи усилия от толкателей к коромыслам. Штанги толкателей могут иметь форму полых цилиндрических стержней со стальными наконечниками.
Штанги изготавливают из износостойкого алюминиевого сплава, крепятся с одной стороны к коромыслу, а с другой – к толкателю.
5. Коромысло
Коромысло служит для передачи усилия от штанги к клапанам. Коромысло выполнено в виде рычага с двумя плечами, который крепится на оси. При этом одно плечо длиннее, чем другое (возле штанги).
Коромысла изготавливают из прочной стали. Устанавливают коромысло на оси, которая крепится к головке цилиндров, на специальных втулках. Втулки предназначены для уменьшения трения между осью и коромыслом.
6. Привод распределительного вала
Распределительный вал приводится в движение от коленчатого вала при помощи привода, который может быть, как мы говорили цепной, шестеренчатый, ременной.
Скорость вращения распределительного вала в 2 раза меньше, чем скорость вращения коленчатого вала, что обеспечивается передаточным числом звездочки, либо размером шкива.
Таким образом, за два вращения коленчатого вала, распределительный вал совершит только одно вращение, что необходимо для осуществления одного рабочего цикла.
Часто встречается в обиходе автомобилистов такой термин, как тепловой зазор.
Топливная система
Топливная система разделена на контуры высокого и низкого давления. Часть топлива подводится в цилиндры через систему улавливания паров бензина.
Контур низкого давления
Контур низкого давления охватывает часть топливной системы от расположенного в баке электронасоса до насоса высокого давления. Давление топлива в этом контуре обычно равно 3 бар и только при пуске горячего двигателя может быть повышено до 5,8 бар.
Контур высокого давления
Контур высокого давления начинается с топливного насоса высокого давления, который подает топливо в распределительныйтрубопровод. На распределительном трубопроводе установлен датчик давления топлива, сигналы которого используются дляподдержания давления в диапазоне от 50 до 100 бар посредством клапана регулятора. Впрыск топлива в цилиндры осуществляется через форсунки высокого давления.
В контур низкого давления входят: 1. топливный бак 2. топливный электронасос 3. топливный фильтр 4. клапан перепуска топлива 5. регулятор давления топливаВ контур высокого давления входят: 6. топливный насос высокого давления 7. трубопровода высокого давления 8. распределительный трубопровод 9. датчик давления топлива 10. клапан регулятора давления 11. форсунки высокого давления
Система выпуска
Эта система была приспособлена к двигателю с непосредственным впрыском бензина. До настоящего времени система очисткиотработавших газов двигателей с непосредственном впрыском была проблематичной. Это связано с тем, что образующиеся при работе на бедных гомогенных и послойных смесях оксиды азота не могут быть восстановлены в обычных трехкомпонентных нейтрализаторах до уровня, допускаемого законодательством. Поэтому для двигателей с непосредственным впрыском бензина применяют накопительные нейтрализаторы, которые способны удерживать оксиды азота при работе на бедных смесях. При заполнениинейтрализатора до предела производится перевод его на режим регенерации, в процессе которого накопленные в нем оксиды азотавыводятся и восстанавливаются до азота.
Охлаждение отработавших газовОхлаждение отработавших газов применяется для того, чтобы поддерживать температуру в накопительном нейтрализаторе в диапазоне от 250 до 500 °C. Только в этом температурном диапазоне обеспечивается удерживание оксидов азота в накопительном нейтрализаторе. Накопительный нейтрализатор необходимо охлаждать также из-за снижения его аккумулирующей способности при перегреве до температур свыше 850 °C.
Охлаждение выпускного коллектораВ подкапотном пространстве предусмотрен воздуховод, который позволяет преднамеренно охлаждать выпускной коллектор направляемым на него потоком свежего воздуха и таким образом снижать температуру отработавших газов.
Раздвоенный выпускной трубопроводЭтот трубопровод расположен перед накопительным нейтрализатором. Его установка является вторым мероприятием поснижению температуры отработавших газов и соответственно накопительного нейтрализатора. Температура газов снижаетсяза счет увеличения теплоотдачи через развитую поверхность трубопровода.
При одновременном использовании обоих мероприятий удается снижать температуруотработавших газов на 30*100 °C в зависимости от скорости автомобиля.
Предварительный трехкомпонентный нейтрализатор.Этот нейтрализатор встроен в выпускной коллектор. Благодаря близости к двигателю он быстро прогревается до рабочей температуры, при которой начинается очистка отработавших газов. Благодаря этому могут быть выполнены жесткие нормы на выбросы вредных веществ.
НазначениеНейтрализатор служит для каталитического преобразования образующихся при сгорании вредных веществ в безвредные вещества.
Понижающие редукторы для четырехтактных двигателей
Понижающий редуктор – устройство, которое должно понижать скорость с высокой с низким крутящим моментом до низкой с высоким крутящим моментом. Особенно они актуальны для сельскохозяйственной и садовой техники.
Среди самых популярных брендов, которые производят такие двигатели, обычно мощностью порядка 15лс – японская «Хонда» и китайский «Лифан» (есть модели с вариатором, автоматическим сцеплением). Также популярен американский производитель Briggs & Stratton, его двигатели используются в газонокосилках (бензотриммерах). Среди популярных двигателей с редукторами – «Чемпион» и его аналог, «Патриот Гарден».
Принцип работы ДВС: основные моменты
Принцип работы двухтактного двигателя
Принцип работы такого двигателя объясняется в циклах (тактах) и их всего два:
1. Такт сжатия. Все начинается с того, что поршень от нижней мертвой точки перемещается к верхней мертвой точке, перекрывая продувочное и выпускное окно. После того как произошло закрытие выпускного окна, в цилиндре происходит сжатие горючей смеси.
Одновременно со сжатием горючей смеси в кривошипной камере создается разряжение, под действием которого из выпускного коллектора через впускное окно и приоткрытый клапан поступает уже готовая горючая смесь непосредственно в кривошипную камеру.
2. Такт рабочего хода. Сжатая рабочая смесь при положении поршня около верхней мертвой точки воспламеняется искрой от свечи. В результате воспламенения резко возрастает температура и давление. Вследствие этого газы расширяются, и поршень перемещается к нижней мертвой точке (происходит полезная работа).
Поршень, опускаясь вниз, создает в кривошипной камере избыточное давление. Под действием этого давления клапан закрывается, не давая горючей смеси вернуться во впускной коллектор. Когда поршень доходит до выпускного окна, оно открывается, и происходит выпуск отработанных газов. Давление в цилиндре понижается.
Далее поршень открывает продувочное окно, осуществляя продувку цилиндра от остатков отработанных газов и заполняя его горючей смесью.
Принцип работы четырехтактного двигателя
Принцип работы четырехтактного двигателя состоит из четырех тактов:
- Впуск. При перемещении поршня от верхней мертвой точки к нижней мертвой точке создается разряжение рабочей камеры и происходит открытие впускных клапанов. В цилиндр засасывается горючая смесь. Когда поршень доходит до нижней мертвой точки, впускные клапаны закрываются.
- Сжатие. При перемещении поршня от нижней мертвой точки к верхней мертвой точке происходит сжатие горючей смеси, вследствие этого увеличивается давление в камере и повышается температура горючей жидкости. Когда поршень доходит до верхней мертвой точки, срабатывает свеча зажигания, которая воспламеняет горючую смесь.
- Рабочий ход или расширение. Происходит пик сгорания горючей смеси. Выделяется много тепла, повышается температура газов продуктов сгорания и давление в цилиндре. Под давлением поршень движется вниз к нижней мертвой точке и через шатун раскручивает коленчатый вал.
- Выпуск. При перемещении поршня от нижней мертвой точки к верхней мертвой точке распределительный вал открывает выпускной клапан и поршень выдавливает отработанные газы. После выпуска отработанных газов выпускной клапан закрывается.
В цилиндрах такты чередуются с определенной последовательностью (1-3-4-2). Это главное правило для стабильной работы четырехтактного двигателя.
РЕЖИМЫ РАБОТЫ ДВИГАТЕЛЯ И СОСТАВ ГОРЮЧЕЙ СМЕСИ
СОСТАВ ГОРЮЧЕЙ СМЕСИ Для роботы двигателя внутреннего сгорания необходима смесь топлива с воздухом. В карбюраторных двигателях топливо (бензин) смешивается с воздухом в определенной пропорции вне цилиндров и, частично испарившись, образует горючую смесь. Этот процесс называется карбюрацией, а прибор, приготавливающий такую смесь, — карбюратором. Смесь, пройдя по впускному трубопроводу, попадает в цилиндры двигателя, где смешивается с остатками горячих отработавших газов, образуя рабочую смесь. Частички распыленного топлива при этом испаряются. Для пуска двигателя и его работы на разных режимах, необходим различный состав горючей смеси. Поэтому карбюратор устроен так, что позволяет изменять количественное соотношение распыленного топлива и воздуха в смеси, поступающей в цилиндры двигателя. Для полного сгорания 1 кг топлива необходимо около 15 кг воздуха. Топливовоздушная смесь в такой пропорции называется нормальной. Режим работы двигателя на этой смеси имеет удовлетворительные показатели по экономичности и развиваемой мощности. Незначительное увеличение количества воздуха в топливовоздушной смеси по сравнению с его нормальным содержанием (но не более 17 кг) приводит к обеднению смеси. На обедненной смеси двигатель работает в наиболее экономичном режиме, т.е. расход топлива на единицу розвиваемой мощности минимален. Полную мощность на такой смеси двигатель не разовьет.
При избытке воздуха (17 кг и более) образуется бедная смесь. Двигатель на такой смеси работает неустойчиво, при этом расход топливо но единицу вырабатываемой мощности возрастает. На смеси переобедненной, содержащей более 19 кг воздуха на 1кг топливо, работа двигателя невозможна, так как смесь не воспламеняется от искры. Небольшой недостаток воздуха в топливовоздушной смеси по сравнению с нормальным (от 15 до 13 кг) способствует образованию обогащенной смеси. Такая смесь позволяет двигателю развивать максимальную мощность при несколько повышенном расходе топлива. Если воздуха в смеси меньше 13 кг на 1 кг топлива, смесь богатая. Из-за недостатка кислорода топливо сгорает не полностью. Двигатель на богатой смеси работает в неэкономичном режиме, с перебоями и при этом не развивает полной мощности. Переобогащенная смесь, содержащая менее 5 кг воздуха на 1 кг топлива, не воспламеняется — работа двигателя на ней невозможна. ПУСК ДВИГАТЕЛЯ При пуске холодного двигателя часть распыляемого топлива оседает на стенках впускного трубопровода, а часть испарившегося топлива, попав в цилиндры, конденсируется на стенках. К тому же при низкой температуре воздуха смесеобразование ухудшается, т. к. замедляется испарение бензина. Поэтому для пуска холодного двигателя необходимо, чтобы карбюратор приготовил переобогащенную топливовоздушную смесь. РАБОТА НА. ХОЛОСТОМ ХОДУ На холостом ходу частота вращения коленчатого вала двигателя невелика, а дроссельные заслонки карбюратора почти полностью закрыты. Из-за этого вентиляция цилиндров не столь эффективна, по сравнению с работой на средней и высокой частотах вращения коленчатого вала и мало количество горючей смеси, поступающей в двигатель. В рабочей смеси содержится большое количество отработавших (остаточных) газов. Поэтому для устойчивой работы двигателя на холостом ходу необходима обогащенная смесь. РЕЖИМ ЧАСТИЧНЫХ НАГРУЗОК На режиме частичных нагрузок от двигателя не требуется полная мощность. Дроссельные заслонки открыты неполностью, но вентиляция цилиндров хорошая. Поэтому на этом режиме достаточно обедненной горючей смеси. Соотношение развиваемой двигателем мощности к количеству потребляемого топлива позволяет считать режим частичных нагрузок самым экономичным. РЕЖИМ ПОЛНОЙ НАГРУЗКИ На режиме полной нагрузки от двигателя требуется максимальная или близкая к максимальной мощность. Двигатель при этом работает на высоких оборотах, а дроссельные заслонки полностью (или почти полностью) открыты. Для этого режима требуется обогащенная смесь, обладающая повышенной скоростью сгорания. РЕЖИМ РЕЗКОГО УВЕЛИЧЕНИЯ НАГРУЗКИ При работе двигателя в режиме резкого увеличения нагрузки, например при разгоне автомобиля, необходима обогащенная смесь. Но поскольку процесс смесеобразования обладает некоторой инертностью, чтобы предотвратить возникновение «провала» при наборе скорости, требуется дополнительное кратковременное обогащение горючей смеси. Для этого дополнительное топливо впрыскивается непосредственно в смесительную камеру карбюратора.
Источник